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Correlated Majority Model 
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We extend the bichromatic majority model by including (one-dimensional 
isotropic) correlations and numerically discuss, through Monte Carlo simula- 
tions, the simple, 1/3, and 2/3 majority rules. We calculate, as functions of the 
concentration p and correlation degree to, the mean finite cluster size r and the 
order parameter m as well as their respective critical exponents v and ft. We find 
v - fl - 1 regardless of the correlation degree or the type of majority. Also, a 
supplementary divergence of ~ is observed at the tc > 0 borderline. 

KEY WORDS: Majority model; geometrical correlations; Monte Carlo; 
critical phenomena. 

1. I N T R O D U C T I O N  

Many problems in physics and other branches of knowledge relie on 
majority arguments. Various real-space renormalization groups and even a 
recent modelization of "political" behavior ~ belong to this category. Along 
this line, a specific geometrical model (majority model) was introduced in 
1982. (21 The model admits the presence of colored plaquettes which can 
choose among q colors. The q = 2 model (bichromatic model) was treated 
within a renormalization group framework in ref. 2, and within a Monte 
Carlo framework in ref. 3. The polychromatic model (arbitrary integer q) 
has also been studied (4) (within the real-space renormalization group). 
However, all these studies share the basic hypothesis of no correlation of 
the colors chosen by neighboring plaquettes (distributed on a d-dimen- 
sional array such as, for instance, the simple hypercubic lattice). In the 
present work we study, within Monte Carlo simulations, the bichromatic 
model by allowing correlations between first-neighboring plaquettes on a 
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linear chain ( d =  1). More specifically, the correlation is assumed isotropic, 
i.e., the probability of having a given color at the right of any plaquette 
equals the probability of having it at its left. Although the model is for- 
mulated in terms of the po-majority (0 ~< Po ~< 1 ), we have run simulations 
only for P0 = 1/2 (simple majority), 1/3, and 2/3. 

The model and the results are presented in Section 2 and our conclu- 
sions in Section 3. 

2. M O D E L  A N D  RESULTS 

We consider, for a given choice of Po, a one-dimensional L-sized strip 
of "black" and "white" stochastically chosen plaquettes. Any pair of 
first-neighboring plaquettes is assumed to satisfy the following distribution 
law: 

P(ai, (7i+ 1) = Pww(~(0 i  "-[- 1) ~(o-,+ 1 -{- 1) + PWB ~(O'i-~- 1) ~(a,+ 1 --  1) 

+pBw6(a i - -  1) g)(ai+~ + 1)+pBB6(ai--  1) 6(ae+l--  1) (1) 

where i runs over the L plaquettes, ai = - 1  (a i=  +1) corresponds to 
"white" ("black") color, and 

Pww +PwB +PBw +PBB = 1 (2) 

We focus the isotropic case, i.e., PwB = PBw; hence 

Pww + 2pBw + PBB = 1 (3) 

We define the correlation degree 

X=- - (Cr ia i+ l )p - - ( c r i ) (a i+ l )p=pBB+Pww--2pBW-- (pBB- -Pww)  2 (4) 

and the black concentration 

P - PBB + PBW (5) 

Equations (3) (5) immediately yield 

Pww = (1 - p)2 + K/4 

PwB = PBw = p(1 - p) - x/4 (6) 

PBB = p2 q_ x/4 

case (~c=0) yields P w w = ( 1 - p )  2, pwB=Pnw = The zero-correlation 
p(1 - p ) ,  and PBB =/92; hence p recovers the variable p of ref. 3. Also, since 



Correlated Majority Model 1385 
Pww, PBw, and PBB must belong to the interval [0, 1] and must satisfy 
Eq. (3), Eqs. (6) fully determine the physically allowed region in the (p, ~) 
space: see Fig. 1. 

To perform the computational simulations [-for a given pair (p, ~c)] 
we proceed as follows. A strip configuration is fully determined by the 
sequence of colors of its L plaquettes. We generate a random number 
rl E [-0, 1]: if rl ~<p, then the first plaquette is black, if rl > p  then the first 
plaquette is white. We generate a second random number r2 e [0, 1 ]: if the 
first plaquette is black and r2 <~PBB/(PBB +PBw) [-r2 > PBB/(PBB + PBW)], 
then the second plaquette is black (white); if the first plaquette is white 
and r2~PwB/(Pww+PwB) [rz>pwB/(Pww+PwB)],  then the second 
plaquette is black (white). This same procedure is followed up to the last 
of the L plaquettes by considering, in order to determine the color of the 
ith plaquette, the actual color of the ( i - 1 ) t h  plaquette. We repeat the 
entire algorithm No times in order to have No different strip configurations. 
We have typically used L = 30,000 and No = 10,000. 

Let us now describe the quantities we measure for each one of the No 
strip configurations. We call I the strip size at which we lose (if we do) the 
black po-majority assumed to exist. To check the majority, we start con- 
sidering the plaquette which is at the center of the strip [-i.e., i=integer  
(L/2)]. If its color is white, we abandon the experiment and this configura- 
tion is not included among the No ones with which we shall calculate 
averages. If its color is black, we consider the cluster of three plaquettes 

Fig. 1. 
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The physically allowed region in the p (black concentration) versus K (correlation 
degree) space; the external region is forbidden. 
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Fig. 2. The p dependence (for increasing p) of the black dominating mean finite-cluster size 
for typical values of the correlation degree x for P0 = 2/3 (the figures for Po = 1/3 and P0 = 1/2 
are very similar). The curves are guides to the eye. Here L = 30,000 and No = 10,000 were 
used. 

c o n s t i t u t e d  b y  t h e  c e n t r a l  p l a q u e t t e  p lu s  i ts t w o  f i r s t - n e i g h b o r i n g  ones .  I f  

w e n o w  lose  the  b l a c k  p o - m a j o r i t y ,  t h e n  l = 3; if n o t ,  we c o n t i n u e  a n d  c o n -  

s t r u c t  t he  f i v e - p l a q u e t t e  c l u s t e r  b y  a d d i n g  to  t he  p r e v i o u s  c lu s t e r  the  n e w  

t w o  f i r s t - n e i g h b o r i n g  p l a q u e t t e s .  I f  t he  b l a c k  m a j o r i t y  is m a i n t a i n e d  u p  to  

t he  L - s i z e d  c lus te r ,  we refer  to  th i s  case  as to  " i n f i n i t e "  c lus t e r ;  if t h e  b l a c k  
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Fig. 3. log ~ versus log IP--Po] for Po = 2/3 and typical values of K (here L = 30,000 and 
N O = 10,000) and p ~ Po - 0. The case p ~ Po + 0 is very similar. 
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majority is lost at some previous level, we refer to it as to "finite cluster." 
The black-dominating mean finite-cluster size is defined through 

= (l)~inite cluster, the average being done on the set of the No experiments. 
The order parameter m is defined as the proportion of N o experiments for 
which we succeeded in maintaining the black po-majority up to arrival at 
the L-sized strip. 

The reversal of the majority appears as a second-order critical 
phenomenon. For fixed ~c, the transition occurs at p = Po if p is increasing 
(from its minimal value to its maximal value: see Fig. 1, and it occurs at 
p =  1 - P o  if p is decreasing (from its maximal value to its minimal one). 
The increasing-p po-majority model is equivalent to the decreasing-p 
(1 -po) -major i ty  model; therefore, for a full study, it is enough to perform 
increasing p simulations, and this is what we did. The p dependence of r for 
typical values of ~c and P0 = 2/3 is depicted in Fig. 2. An interesting fact 
must be stressed: for ~c > 0 and arbitrary Po, ~ diverges not only at p = Po, 
but also for p approaching its minimal and its maximal values. This is due 
to the fact that at the K > 0 borderline we have PBw = PwB = 0; hence the 
clusters maintain the same color. All the divergences of ~ belong to the 
same universality class. More precisely, r oc I P -  Pol ~ for p -  Po ~ +0 
(VK), ~ OC (p  - -  Pminimal) - v  for [--Pminimal'---)" q-0,  and ~ oc (Pmaximal - -p )  - v  

for p--Pmaximal---~ --0 ( f o r  K > 0 )  with v = l _ 0 . 1  (see Fig. 3 for a typical 
example). In Fig. 4 we present some typical examples of the ~c dependence 
of ~ for typical values o fp  and Po. The p dependence of m for typical values 

Fig. 4. 
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The x dependence of the increasing-p value of ~ for typical values of p and Po = 2/3. 
Here L = 30,000 and N o = 10,000. 
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Fig. 5. The p dependence (for increasing p) of the order parameter m for typical values of 
P0 and of the correlation degree x. Here L = 30,000 and No = 10,000. 

of Po and tc is depicted in Fig. 5. It is quite remarkable that ~c has 
practically no influence on the m versus p curves. We obtained in all cases 
m ~: (p - p0) ~ (p ~ Po + 0) with fi = 1 _ 0.05. 

3. C O N C L U S I O N  

We have discussed the d =  1 bichromatic po-majority model allowing 
for isotropic correlations. The present Monte Carlo treatment provides the 
mean size ~ and the order parameter rn as functions of (p, x, Po). It is 
shown that all the singularities belong to the same universality class, 
characterized by v = 1 _+ 0.1 and /~ = 1 _+ 0.05. In other words, analogously 
with what happens in correlated percolation, the critical behavior is not 
affected by local correlations. Two more facts deserve special mention: 
(i) ~ diverges not only at P = P o  or p = ( 1 - p o ) ,  but also on the re>0 
borderline: (ii) ~c has no influence on the (p, Po) dependence of m. 

It is worth stressing that critical behavior at finite values of ( 1 - p )  is 
exhibited for a one-dimensional model because the majority check involves 
counting across arbitrarily large distances, and consequently the effective 
dimensionality of the problem is in fact infinity. This is of course the reason 
that mean-field-like exponents are obtained. 

The study of the influences of the anisotropy, the dimensionality, and 
the spatial range of the correlations as well as that of q =  (number of 
colors) being larger than 2 would be welcome. 
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